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ABSTRACT

In Chapter I the definition of constrained sets of plans and the

problems to be considered are given. In Chapter II a correspondence

between constrained sets of plans and RT x RT square arrays and a

correspondence between constrained sets of plans and resolvable

balanced incomplete block designs are given. These correspondences

led to the enumeration of many constrained designs. In Chapter IMI

some relationships between the variance of the error sum of squares

under complete randomization and under constrained randomization are

given. In Chapter IV the power of the randomization test under

constrained randomization was considered for nearly linearly, randomly,

and semi-randomly distributed basal yields. The empirical results

exhibit a tendency of the sensitivity of the test for the detection of

treatment differences to increase with decreases in the variance of the

error sum of squares of the constrained sets.
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I. INTRODUCTION

The notion of constrained randomization is due to W. J. Youden (1956).

Suppose that one has RT experimental units on which to apply T treat-

ments. One might, for example, be comparing 3 measuring devices

(T = 3 "treatments"') by making 2 measurements with each, giving 6

measurements in all. The measurements will be taken in 6 consecu-

tive periods, and one might be concerned about the possibility of drift in

the attribute being measured or in the operators. One would then regard

the 6 periods as experimental units, and choose a pattern of obser-

vation by associating devices to periods at random, subject to the

restriction that each device is used in two periods. Such a way of

proceeding is known as a completely randomized design. With this

design some of the (S T, [ 90] possible plans have a systematic

ordering of the treatments. Note that these occur in sets of T! , which

differ only in the labelling of the treatments. With the case T = 3,

R = 2, a possible plan under complete randomization is

Unit 1 2 3 4 5 6

Treatment a a b b c c

where the numbers 1, 2,..., 6 denote the units and the letters a, b, c

denote the treatments. Youden's contribution was the realization that

there exists a subset of the totality of possible plans which has those

properties of the complete set which are commonly regarded as

essential, and does not contain some plans which seem to be undesirable

because they appear to be systematic.



Definition: A subset of plans is an unbiased subset of plans if

(a) the probability that any particular treatment falls
1

on a particular unit is I and the treatments occur

equally frequently in each plan, and (b) the expec-

tations of the treatment mean square and of the error

mean square over this subset are equal in the absence

of treatment effects.

The above implies that if the experiment were a dummy one, that is,

there were no treatment effects and no error of observation, the mean

square within treatments should equal the mean square between treat-

ments on the average. In this case either would then necessarily be

equal to

1 RT 1 RT
RT-I " (yi )' = TR-T T-1) X (yi - y.),

i=l(R ij=l1

i~j

where the yi (i = 1, 2,..., RT) are the basal yields of the experimental

units. Therefore the subset of plans is unbiased if all possible

differences between pairs of experimental units are represented in the

sum of squares for error equally frequently over all the plans belonging

to the subset.

Definition: A constrained set of plans is a subset of the totality

of plans which is unbiased.

The problems to be considered in this report are the existence and

properties of constrained sets.
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11. EXISTENCE OF CONSTRAINED SETS OF PLANS

A. Representation in RT x RT Square Arrays

Consider the RT x RT square array of (RT)z cells (i,j),

(ij = l,2,...,RT) where the cell (i,j) is the intersection of the i-th

row and j-th column in the array. Every time a particular treatment

occurs on the i-th and j-th units of some plan, say plan I, we will

place the symbol I in the (i, j)-th cell of the RT x RT square array.

The symbol I in the (i,j)-th cell also corresponds to the (yi - y.)2

component of the error mean square appearing in plan I. Since there

are no differences of the form (yi - yi), the diagonal cells of the square

array never contain any symbols. Also since

RT RTZR T1) Z (yi " yj) =RRT-) --, 7 (Yi " yj)

jiTjTll1 jJ
ivj i<j

we need only consider the cells (i,j) for i<j (i.e. the cells above the

main diagonal). Consider, for example, the following constrained set

which is not necessarily a useful one, for 3 treatments a, b and c,

on 9 units:

Plan Unit No.
No. 1 2 3 4 5 6 7 8 9

A a a a b b b c c c

B a b c a b c a b c

C a b c c a b b c a

D a b c b c a c a b

3



The occurrence of differences between units in the error sums of

squares can be represented by the following array

1 2 3 4 5 6 7 8 9

1 0 A A B C D B D C

2 A 0 A D B C C B D

3 A A 0 C D B D C B

4 B D C 0 A A B C D

5 C B D A 0 A D B C

6 D C B A A 0 C D B

7 B C D B D C 0 A A

8 D B C C B D A 0 A

9 C D B D C B A A 0

For instance, the differences of units 1 and 2, units 1 and 3, units

2 and 3, etc. occur in the error sum of squares for plan A. Consider-

ation of this representation leads to the following obvious theorem:

Theorem 1:

A necessary and sufficient condition for the existence of a constrained

set of, say, N plans is that we can insert symmetrically the N symbols,

AB, C,..., N in the off-diagonal cells of the RT x RT array in such a

way that

(a) any symbol occurs once or not at all in any cell,

(b) if a symbol occurs in cells (i,j) and (i,j') it occurs

in cell (j,j'),

and (c) each cell contains the same number of symbols.

4



The number of cells in the upper off-diagonal portion of the RT x RT

square arrayis RT(RT-l)* Each planhas (R) T= RT(R-l)sqaeara s 2 "2 2

differences between units treated alike so that the minimum possible

number of plans belonging to a constrained set is

N RT(RT-I) 2 (RT-)
N 2 RT(R-K) (1)

where K is the lowest integer such that N is an integer. It is obvious

then that K is the number of symbols contained in the (isj)-th cell for

i, j = 1 2#..., RT& i 0 j, or the number of times the experimental unit

difference (yi - y.) for ij = l,, ... &RT& i 0 j, occurs in the set of

plans.

B. Correspondence to Resolvable Balanced Incomplete Block Designs

We now make a correspondence between constrained sets of plans

and resolvable balanced incomplete block designs which we will hence-

forth designate by R.B.I.B.D.

A balanced incomplete block design with parameters vb, r, k, and

A is an arrangement of v varieties in b blocks of k units with every

variety occurring in r blocks and every two varieties occurring

together in A blocks. If in addition it is possible to arrange the b

blocks of the balanced incomplete block design into r groups of n

blocks each (b = nr), so that each variety occurs exactly once in each

group of blocks, i. e. each group contains one complete replication of all

the varieties, then the design is a resolvable balanced incomplete block

5



design (R.B.I.B.D.).

Let Si (i , I, 2..., N) denote the i-th group of blocks and

B.. (i = 1,2, ... N; j = 1,2,...*T) denote the j-th block belonging to

S. Let the v varieties belonging to Si correspond to the RT experi-

mental units of the i-th plan belonging to the constrained set. Let the

k(= R) varieties of B.. correspond to the R experimental units on
13

which treatment j is replicated in the i-th plan belonging to the

constrained set. By this correspondence we have determined that the

parameters of the R.B.I.B.D. are given by

v = RT

b = NT

r =N (2)

k =R

r(k-l) N(R-l)

-v-i) TRT-l1

As an example of this correspondence consider the R.B.I.B. D. with

the parameters v = 6, b = 15, r = 5, k = 2, and X= 1 which corresponds

to the constrained set of 5 plans for 3 treatments on 6 experimental

units. A R.B.I.B.D. with these parameters is given by

12 13 14 15 16

35 26 23 24 25

46 45 56 36 34

where the vertical lines separate the groups of blocks. From this

R. B. I. B.D. we obtain the constrained set of plans

6



Plan Unit No.
No. 1 2 3 4 5 6

I a a b c b c

II a b a c c b

mi a b b a c c

IV a b c b a c

V a b c c b a

Thus for the first replicate of the R.B.I.B.D., the first block contains

treatments 1 and 2, the second block contains treatments 3 and 5, and

the third block contains treatments 4 and 6. The way of making the

correspondence to constrained designs leads to the first plan having the

first treatment (labelled a) being on units 1 and 2, the second treatment

(labelled b) being on units 3 and 5 and the third treatment (labelled c)

being on units 4 and 6. By constructing the RT x RT square array

this set of plans may easily be shown to form a constrained set of plans.

Theorem 2:

A necessary and sufficient condition for the existence of a con-

strained set of N plans for T treatments on RT experimental units is

the existence of a R. B. I. B.D. with parameters given by equation 2.

One form of the problem of finding a constrained set reduces there-

fore to the problem of finding R. B. I. A. D. with parameters given by

equation 2. A survey of literature is given in Sutter (1962) and the

specific references concerning the construction of R.B.I.B.D. Is are

given at the end of this report.
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miI. PROPERTIES OF THE ERROR SUM OF SQUARES

A. The Error Sum of Squares under Complete Randomization

In the case of the completely randomized design for T treatments

applied to RT experimental units let 6kf be unity if the f-th reali-
u

zation of treatment k appears on the u-th unit and zero otherwise.

Under additivity the yield on plot u with treatment k is

Yuk = x. +tk

where x is the basal yield of the u-th unit, x. is the mean basal

yield, and tk is the yield of treatment k on plot u. The observed

value of the f-th realization of treatment k can be expressed in terms

of the set of conceptual values, yuk, by

n
ukf l u Yuk
u= I

n

+ X tk+ n k e
u= 1 U u

where eu = (xu - x.). The error sum of squares, denoted by E.S.S..

is given by

E. S.S. = ; y2 - R 2; y2

k,f k k.

We then find that

E(E.S.S.) = T(R-I)/(RT-I)S 2

8



and

V(E.S.S.)= (R-1)(T-1)(RT - 3RT+3)S - ZT(T-1)(R-1) SR(RT- 1 ) (RT-7.) (RT-3) 2 (RT- 1 (RT- Z)(RT-3) 4

n n
where S = 2 e2  and S4 = Z eu=l 1uU= I

B. The Error Sum of Squares under Constrained Randomization

By the definition of constrained sets of plans the expectation of the

error sum of squares under constrained randomization is the same as

the expectation of the error sum of squares under complete

randomization. The 6kf under constrained randomization take on the
u

same values, i. e. 0 and 1, as under complete randomization, but

their distributional properties are different. The probability that a

certain combination of the random variables takes on a specified value

depends on the values of u. For example, for a given constrained set

we may have that

P [6kfu= I 6 ku= 1 J =1 while P [6"= 11 6'u:,= = 0,

where u # u' 0 u" 0 u"' and f 0 f'. For this reason it appears very

difficult to determine the variance of the error sum of squares in general

under constrained randomization.

The notion of constrained randomization was developed to overcome

some of the undesirable effects of systematic arrangements of the units.

Since a linear relationship of basal yields to unit number constitutes

perhaps the simplest example of this type, we will now consider this

9



situation in some detail. Because of origin and scale invariance of

analysis of variance procedures we will let the basal yield of each unit

equal the unit number.

The reason for examining the notion of constrained randomization is

to develop some understanding of the properties it induces with reference

to tests of significance, estimation, and sensitivity. It seems reasonable

to expect that the constrained set with the smallest variance of the error

sum of squares will be the most sensitive for detecting treatment

differences.

We now give two examples of constrained sets of plans along with the

distribution of their error sum of squares, where we assume that the

basal yields are equal to their respective unit numbers.

Let R a T = 4 and N = 5. Yates (1936) gave the R.B.I.B.D. plan

which leads to the constrained set of 5 plans given in Table 1.

TABLE I

SET A OF PLANS AND THE DISTRIBUTION OF ITS
ERROR SUM OF SQUARES

Plan No. 1 23456 Unit No. E.S.S.
P o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 a a a a b b b b c c c c d d d d 20.0

2 a b c d a b c d a b c d a b c d 320.0

3 a b c d b a d c c d a b d c b a 340.0

4 a b c d d c b a b a d c c d a b 340.0

5 a b c d c d a b d c b a b a d c 340.0

10



The error sum of squares for plan 5, for example, is

12 + 7Z + 12' + 14Z - (I + 7 + 12 + 14)2 / 4

+ 2Z + 82 + 1Iz + 132 - (2 + 8 + 11 + 13)2/4

+ 3Z + 52 + 10 + 16Z - (3 + 5 + 10 + 16)z / 4

+ 42 + 62 + 92 + 15? - (4+ 6 + 9 + 15)2/4

= 340.

For this constrained set

E(E.S.S.) = Z72

and V(E.S.S.) = 15,936

Under complete randomization

E(E.S.S.) = 272

and V(E.S.S.) = 2,339.20

By permuting the rows and columns of the 16 x 16 square array for

the constrained set given in Table, we find the constrained set of plans

given in Table 2.

For this constrained set

E(E.S.S.) = 272

and V(E.S.S.) = 38.40.

ii



TABLE 2

SET B OF PLANS AND THE DISTRIBUTION OF ITS
ERROR SUM OF SQUARES

Unit No. ES S.

Plan No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I a b b a b a c d c d d c d c a b 276

2 a a b b c c d d a a b b c c d d 260

3 a b c d a b b a d c b a d c c d 276

4 a b c d d c d c c d a b- b a b a 276

5 a b a b c d a b c d c d a b c d 272

The large numerical value of the variance of the error sum of squares

for the constrained set of plans given in Table 1 was generated from a

4 x 4 completely orthogonalized Latin square. The above example is an

illustration of the following general theorem.

Theorem 3:

If the unit number is equal to the basal yield of that unit and if a

completely orthogonalized Latin square of side R exists, then in the

class of all constrained sets with parameters R = T and N = R + 1, the

maximum value of the variance of the error sum of squares is attained

by every constrained set corresponding to any completely orthogonalized

Latin square of side R.

12



IV. POWER OF THE RANDOMIZATION TEST FOR
CONSTRAINED RANDOMIZATION

A. Introduction

The common use of either the F distribution or the beta distri-

bution, in connection with tests associated with the analysis of variance

table, has its origin in the normality assumption about the distribution

of the basic errors occurring in the models appropriate to the mathe-

matical representation of basic experimental situations. Consideration

of experiments where constrained randomization is useful, however,

shows that the experimental unit errors follow a distribution distinctly

non-normal.

We can in general perform an exact test as follows. Compute the

value of the test criterion treatment sum of squares over total sum of

squares, denoted by B 1 , from the experiment as it was realized.

Assuming that the values observed in the experiment are values

characteristic of the experimental units proper, compute the values of

the test criterion treatment sum of squares over total sum of squares

for all potential realizations of the experiment. Arrange these computed

values in ascending order of magnitude. Then on the basis of a

significance level of say 5%, the null hypothesis of no treatment effect

will be rejected when B 1 is among the upper 5% of the computed

values in the ascending array. The above test procedure is exact in the

sense that its significance level has the specified size. It is evident,

however, that for the larger experiments, without using electronic

computer methods, the computations required for performing the test

are prohibitively laborious.

13



The performance of the experiment will yield a set of RT observed

yields and corresponding to these observed yields the value

B 1 = treatment sum of squares over total sum of squares can be

computed. Under the assumption that there are no treatment effects, any

of the other N assignments of the T treatments to the RT experi-

mental units will result in a set of RT observed yields. There are N

such sets of RT observed yields and for each set the value of B can be

computed. The N values so computed can now be arranged in an array

of ascending magnitudes. The position of BI in this array then tells us

the levels of significance for which the null hypothesis of no difference

among the T treatments would be rejected. In practice the actual

values of the test criterion treatment sum of squares over total sum of

squares need not be computed because there is a one-to-one corre-

spondence between the magnitudes of B and the magnitudes of

T
2; TZ
j=l j

where T. is the sum of the observed yields which receive treatment j,

so that an equivalent simplified test procedure can be specified.

To illustrate the idea, suppose that we used the constrained design

for 3 treatments on 6 units given on page 7. That is, we choose at

random one of the following 5 plans:

14



Plan Unit No.
No. 1 2 3 4 5 6

I a a b c b c

II a b a c c c

HI c b b a c c

IV a b c b a c

V a b c c b a

We would of course, assign the letters a, b and c to the 3 treatments

at random. Now suppose we drew plan IV. and obtained the following

observations:

Unit No.
1 2 3 4 5 6

Treatment a b c b a c

Response 15 18 21 20 19 24

To perform the randomization test we superimpose successively plans

I, 1I, III, IV, and V on the observations, and analyze the resulting

configurations. We obtain the following numbers:

15



Total
S. Sq. Sum of

Plan around Correction (treatment Treatment Error
No. mean factor total)2  S. Sqs. S. Sqs. F

1 45.5 2281.5 2312.5 31.0 14.5 3.21

II 45.5 2281.5 2290.5 9.0 36.5 0.37

MI 45.5 2281.5 2297.5 16.0 29.5 0.81

IV 45.5 2281.5 2322.5 41.0 4.5 13.67

V 45.5 2281.5 2285.5 4.0 41.5 0.14

For instance if we superimpose plan I on the observations, we obtain the

configuration:

Unit No.
1 2 3 4 5 6

Treatment a a b c b c

Response 15 18 21 20 19 24

The total sum of squares is

152 + 182 + 212 + 202 + 192 + 242 - (15 + 18 + 21 + 20 + 19 + 24)z 46

The correction factor is

(15 + 18+ 21 +20 + 19 + 24)z = 2,281.5

6

The sum of squares of treatment totals is

(15 + 18)z + (21 + 19)2 + (20 +2 2,312.5.
2 2 2

The treatment sum of squares is

2,312.5 - 2, 281.5 = 31.0.

The error sum of squares is

45.5 - 31.0 = 14.5.

16



The value for F is

(31.0) (14-5) 3.1

To make the randomization F test we note that the observed value of

F was 13.67 and that other possible plans we could have obtained

would give F values of 3. 21, 0.37, 0. 81, and 0. 14. Therefore the

observed F value is equalled or exceeded in the totality of 5 plans

only once, and the significance level to be attached to the observed
1

differences is or 20%. Because the total sum of squares is constant,

there is a monotone relationship between F and the treatment sum of

squares, and because the correction factor is constant, one need consider

only the sum of squares of treatment totals in deciding the randomization

significance of the observed differences. Note in passing that the

assumption of normality would allow us to use the F table with 2 and

3 degrees of freedom leading to a significance level between 10% and

5% for the observed differences. In general the randomization test

leads to a discrete set of possible significance levels, in contrast to a

test based on an assumed continuous distribution.

The value of the power function for a particular vector of values,

60 = (61V 62* • "s 6 T) of the treatments and a particular vector of values,

P0 = (p1 'pP 2 ... apn). n = RT, of the units may be computed as follows.

Each arrangement of the T treatments on the RT experimental units

would yield a set of RT observed yields, yi, for i = 1, 2#... # RT. On

the basis of that particular set of observed yields, yi, we may perform

the test of the hypothesis of no treatment differences as described in the

17



paragraph above, and hence record whether the hypothesis would be

accepted or rejected for the set under consideration. Altogether N such

sets of RT observed yields can be generated and for each set a decision

as to the acceptance or rejection of the hypothesis can be made. The

proportion of rejections of the null hypothesis at a particular

significance level, constitutes the value of the power function of the test

when the vector of treatment values is 60 *

B. Empirical Results

Empirical results for the power of the randomization test under

constrained randomization have been obtained for a number of different

sets of values for the parameters R, T, and N. For each set of values

R, T, and N. we consider three different constrained sets characterized

by a small, an average, and a large value of the variance of the error

sum of squares under linear basal yields. The different sets are denoted

by Lý, M, and H respectively. For each such constrained set, L, M,

and H, three different types of basal yields, xi, are considered. We

will refer to these types as

(1) Linear - these are nearly linearly distributed random variables

with variance equal to K,

(2) Random - these are normally and independently distributed

random variables with a mean of zero and a variance

equal to K, and

(3) Semi-Random - these are distributed as the sum of a linearly

distributed random variable with variance equal to

18



K and a normally and independently distributed

random variable with a mean of zero and a variance
1

equal to •K.

The vectors of treatment effects are determined by the following

relationships:

T
M t. = 0
j=l j

and

tI1 = a, t 2 = a + b, t3 = a + 2b*...st T = a + (T-l)b,

where a is arbitrary and b is chosen so that the ratio of the true

standard deviation among the treatment effects to * , which is the

standard deviation of a treatment mean, equals X, where A takes on

the values

1 1 1 1 1 5 1 1 2
T-2 0 V a39i3128394 '5.

We now give some representative tables of the power function of the

randomization test for the constrained sets considered.
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C. Discussion of the Empirical Results

Consider the three different constrained sets with the same values

for the parameters R, T, and N, for which the planued distinguishing

feature consists in their different values for the variance of the error

sum of squares. Under nearly linear basal yields the power of the

randomization test for the constrained set with a low variance of the

error sum of squares is nearly always greater than or equal to that for

either of the constrained sets with an average or a high variance of the

error sum of squares. Similar differences in the power occur for the

constrained sets with average and high variances of the error sum of

squares. The above is also true, but somewhat less pronounced, for the

semi-randomly distributed basal yields. Also, when the basal yields

form a sample from a normal distribution, the differences between the

power functions of the three different constrained sets are small. As an

example of these facts we refer to Table 5. When X= 11 and the basal3

yields are nearly linear the power is 82.50%, 54.16%, and 20.00% for

the constrained sets L, M, and H, respectively. With the same

situation for random basal yields the powers are 87.50%, 81.66%, and

85.83% and 76.66%, 74.16%, and 71.66% for semi-random basal

yields. It should be noted that the variances of the error sum of squares

for all three plans with random and semi-random basal yields are all

small relative to the two large values of the variance of the error sum of

squares under nearly linear basal yields.

One would expect that a constrained set, for which the variance of

the error sum of squares is nearly equal to the variance of the error
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sum of squares under complete randomization, has a power function

nearly equal to that holding under complete randomization. Thus, with

the above assumption the tables indicate that with nearly linear basal

yields a constrained set, for which the variance of the error sum of

squares is less than that under complete randomization, has greater

power than that holding under complete randomization. Table 7 shows

that increases in X are not always accompanied by corresponding

increases in the power. This last fact does not correspond to the normal

theory result where the power function of the analysis of variance test is

a strictly increasing function of A.
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